TensorFlow
与Theano类似,TensorFlow是使用数据流图进行数值计算的开源库(这是所有神经网络固有的特征)。最初由谷歌的机器智能研究机构内的Google Brain Team研究人员开发,此后库一直开源,并提供给公众。
相比于Theano ,TensorFlow的主要优点是分布式计算,特别是在多GPU的环境中(虽然这是Theano正在攻克的项目)。
除了用TensorFlow而不是Theano替换Keras后端,对于TensorFlow库我并没有太多的经验。然而在接下来的几个月里,我希望这有所改变。
Lasagne
Lasagne是Theano中用于构建和训练网络的轻量级库。这里的关键词是轻量级的,也就意味着它不是一个像Keras一样围绕着Theano的重包装的库。虽然这会导致你的代码更加繁琐,但它会把你从各种限制中解脱出来,同时还可以让您根据Theano进行模块化的构建。
简而言之:Lasagne的功能是Theano的低级编程和Keras的高级抽象之间的一个折中。
我最喜欢的:
Keras
如果我必须选出一个最喜欢的深度学习Python库,我将很难在Keras和mxnet中做出抉择——但最后,我想我会选Keras。
说真的,Keras的好处我说都说不完。
Keras是一个最低限度的、模块化的神经网络库,可以使用Theano或TensorFlow作为后端。Keras最主要的用户体验是,从构思到产生结果将会是一个非常迅速的过程。
在Keras中架构网络设计是十分轻松自然的。它包括一些state-of-the-art中针对优化(Adam,RMSProp)、标准化(BatchNorm)和激活层(PReLU,ELU,LeakyReLU)最新的算法。
Keras也非常注重卷积神经网络,这也是我十分需要的。无论它是有意还是无意的,我觉得从计算机视觉的角度来看这是非常有价值的。
更重要的是,你既可以轻松地构建基于序列的网络(其中输入线性流经网络)又可以创建基于图形的网络(输入可以“跳过”某些层直接和后面对接)。这使得创建像GoogLeNet和SqueezeNet这样复杂的网络结构变得容易得多。
我认为Keras唯一的问题是它不支持多GPU环境中并行地训练网络。这可能会也可能不会成为你的大忌。
如果我想尽快地训练网络,那么我可能会使用mxnet。但是如果我需要调整超参数,我就会用Keras设置四个独立的实验(分别在我的Titan X GPUs上运行)并评估结果。
mxnet
我第二喜欢的深度学习Python库无疑就是mxnet(重点也是训练图像分类网络)。虽然在mxnet中站立一个网络可能需要较多的代码,但它会提供给你惊人数量的语言绑定(C ++、Python、R、JavaScript等)。
Mxnet库真正出色的是分布式计算,它支持在多个CPU / GPU机训练你的网络,甚至可以在AWS、Azure以及YARN集群。
它确实需要更多的代码来设立一个实验并在mxnet上运行(与Keras相比),但如果你需要跨多个GPU或系统分配训练,我推荐mxnet。
sklearn-theano
有时候你并不需要终端到终端的培养一个卷积神经网络。相反,你需要把CNN看作一个特征提取器。当你没有足够的数据来从头培养一个完整的CNN时它就会变得特别有用。仅仅需要把你的输入图像放入流行的预先训练架构,如OverFeat、AlexNet、VGGNet或GoogLeNet,然后从FC层提取特征(或任何您要使用的层)。
总之,这就是sklearn-theano的功能所在。你不能用它从头到尾的训练一个模型,但它的神奇之处就是可以把网络作为特征提取器。当需要评估一个特定的问题是否适合使用深度学习来解决时,我倾向于使用这个库作为我的第一手判断。
nolearn
我在PyImageSearch博客上用过几次nolearn,主要是在我的MacBook Pro上进行一些初步的GPU实验和在Amazon EC2 GPU实例中进行深度学习。
Keras把 Theano和TensorFlow包装成了更具人性化的API,而nolearn也为Lasagne做了相同的事。此外,nolearn中所有的代码都是与scikit-learn兼容的,这对我来说绝对是个超级的福利。
我个人不使用nolearn做卷积神经网络(CNNs),但你当然也可以用(我更喜欢用Keras和mxnet来做CNNs)。我主要用nolearn来制作Deep Belief Networks (DBNs)。
DIGITS
DIGITS并不是一个真正的深度学习库(虽然它是用Python写的)。DIGITS(深度学习GPU培训系统)实际上是用于培训Caffe深度学习模式的web应用程序(虽然我认为你可以破解源代码然后使用Caffe以外其他的后端进行工作,但这听起来就像一场噩梦)。
如果你曾经用过Caffe,那么你就会知道通过它的终端来定义.prototxt文件、生成图像数据、运行网络并监管你的网络训练是相当繁琐的。 DIGITS旨在通过让你在浏览器中执行这些任务来解决这个问题。
更多:python是服务器语言13个最常用的Python深度学习库
https://www.002pc.comhttps://www.002pc.com/python/1388.html
你可能感兴趣的Python,13,深度,常用,学习
